Alpha-CIR Model in Sovereign Interest Rate Modelling

Chunhua Ma

School of Mathematical Sciences, Nankai University

Joint work with Ying Jiao (University of Lyon) and Simone Scotti (University Paris Diderot)

27 March 2017, Paris
10th Financial Risks International Forum
Motivation

- Current sovereign bond markets in the Euro zone:
 - persistency of low interest rates
 - significant fluctuations at local extent.

Figure: Long term interest rates of Euro area countries.
Modelling approaches

- Large fluctuations in financial data motivate the introduction of jumps in the interest rate dynamics: Eberlein & Raible (1999), Filipović, Tappe & Teichmann (2010)...

- Difficulty: jump presence v.s. trend of low interest rate
Plan of our work

- Objective: a new model of interest rate (α-CIR model) for these seemingly puzzling phenomena in a unified and parsimonious framework.
- Jump diffusion model as natural extension of the CIR model, using the α-stable branching processes
 - CIR model is the particular case with continuous path
- Integral representation to highlight the branching property, Dawson and Li (2006):
 - limit of Hawkes processes: clustering and self-exciting properties;
 - link with CBI processes: exponential affine structure for bond price, Duffie, Filipović & Schachermayer (2001)
- The bond price decreases with the parameter α, which allows to respond to the low interest rate behavior.
The α-CIR model setup

We consider α-CIR($a, b, \sigma, \sigma_Z, \alpha$) model for the short interest rate

$$r_t = r_0 + \int_0^t a (b - r_s) \, ds + \sigma \int_0^t \sqrt{r_s} \, dB_s + \sigma_Z \int_0^t r_s^{1/\alpha} \, dZ_s \quad (1)$$

- $B = (B_t, t \geq 0)$ a Brownian motion
- $Z = (Z_t, t \geq 0)$ a spectrally positive α-stable compensate Lévy process with parameter $\alpha \in (1, 2]$ with

$$\mathbb{E} \left[e^{-qZ_t} \right] = \exp \left\{ - \frac{tq^\alpha}{\cos(\pi \alpha/2)} \right\}, \quad q \geq 0.$$

- B and Z are independent

Z_t follows the α-stable distribution $S_\alpha(t^{1/\alpha}, 1, 0)$ with scale parameter $t^{1/\alpha}$, skewness parameter 1 and zero drift.
A natural extension of the CIR model

- Existence of the unique strong solution by Fu and Li (2010).
- When $\sigma_Z = 0$, we recover the CIR model.
- When $\alpha = 2$, it also reduces to a CIR model but with volatility parameter $(\sigma^2 + 2\sigma_Z^2)^{1/2}$.

Figure: Lévy process Z and the corresponding rate r with different α.
The difference of Z from a Brownian motion is controlled by the tail index α:

- $\alpha = 2$: Z is a Brownian motion scaled by $\sqrt{2}$;
- $\alpha < 2$: Z is a pure jump process with heavy tails. More as α close to 1, more likely Z_t takes values far from median;
- $1 < \alpha < 2$: Z is a pure jump process with infinite-variation: comparison with Poisson process, Z has an infinite number of (small) jumps over any time interval, allowing it to capture the extreme activity.
- A smaller α is related to a deeper (negative) compensation of Z.
Similar properties with CIR model

Boundary condition:
The point 0 is an inaccessible boundary if and only if $2ab \geq \sigma^2$. In particular, a pure jump α-CIR process with $ab > 0$ never reaches 0 since $\sigma = 0$.

Branching property:
r can be decomposed as $r = r^{(1)} + r^{(2)}$ where for $i = 1, 2$, $r^{(i)}$ is an α-CIR($a, b^{(i)}, \sigma, \sigma_Z, \alpha$) process such that $r_0 = r_0^{(1)} + r_0^{(2)}$ and $b = b^{(1)} + b^{(2)}$.
Integral representation

Integral form by using the random fields

\[r_t = r_0 + \int_0^t a(b - r_s) \, ds + \sigma \int_0^t \int_0^{r_s} W(ds, du) \]
\[+ \sigma Z \int_0^t \int_0^{r_s-} \int_{\mathbb{R}^+} \zeta \tilde{N}(ds, du, d\zeta), \]

- \(W(ds, du) \): white noise on \(\mathbb{R}^2_+ \) with intensity \(dsdu \),
- \(\tilde{N}(ds, du, d\zeta) \): compensated Poisson random measure on \(\mathbb{R}^3_+ \) with intensity \(dsdu\mu(d\zeta) \),
- \(\mu(d\zeta) \) is a Lévy measure satisfying \(\int_0^\infty (\zeta \wedge \zeta^2) \mu(d\zeta) < \infty \).

Equivalence of two representations

We choose the Lévy measure to be

\[\mu(d\zeta) = -\frac{1\{\zeta>0\}d\zeta}{\cos(\pi\alpha/2)\Gamma(-\alpha)\zeta^{1+\alpha}}, \quad 1 < \alpha < 2, \]

Then the root representation (1) and the integral representation (2) are equivalent in the following sense by Li (2011):

- The solutions of the two equations have the same probability law.
- On an extended probability space, they are equal almost surely.
Link to Hawkes process

- When $\sigma = 0$ and $\mu(d\zeta) = \delta_1(dz)$, then r is given by

$$r_t = r_0 + abt - \int_0^t (a + \sigma Z) r_s ds + \sigma Z \int_0^t \int_0^{r_s-} N(ds, du) \tag{4}$$

which is the intensity of Hawkes process $\int_0^t \int_0^{r_s-} N(ds, du)$, N being the Poisson random measure with intensity $dsdu$.

- Consider a sequence $\{r_t^{(n)}, t \geq 0\}$ defined by (4) with parameters $(a/n, nb, \sigma Z)$. Then

$$r_{nt}^{(n)}/n \xrightarrow{L} Y_t \quad \text{in} \ D(\mathbb{R}_+),$$

where $D(\mathbb{R}_+)$ is the Skorokhod space of càdlàg processes and

$$Y_t = \int_0^t a(b - Y_s) ds + \sigma Z \int_0^t \int_0^{Y_s} W(ds, du).$$

Locally equivalent Lévy-Ornstein-Uhlenbeck process

- Consider the α-CIR process with initial value r_0 and introduce

$$\lambda_t = r_0 + \int_0^t a(b - \lambda_s) \, ds + \sigma \int_0^t \int_0^{r_0} W(ds, du) + \sigma Z \int_0^t \int_0^{r_0} \int_{\mathbb{R}^+} \zeta \tilde{N}(ds, du, d\zeta)$$

where the processes W and \tilde{N} are the same as in (1).

- The above LOU process can be written as

$$\lambda_t = r_0 + \int_0^t a(b - \lambda_s) \, ds + \sigma \sqrt{r_0} B_t + \sigma Z \sqrt{r_0} Z_t,$$

- The implicit negative drifts lead to a linear decay for λ_t while an exponential decay for r_t: when σ_Z increases, the decreasing drift plays a more important role in α-CIR than in LOU.
Comparison between α-CIR and LOU (continued)

- Separating small and large jumps in LOU, we get

$$\lambda_t = r_0 + \int_0^t a\left(b - \frac{\sigma Z r_0 \Theta(\alpha, y)}{a} - \lambda_s\right)ds + \sigma \int_0^t \int_0^{r_0} W(ds, du)$$

$$+ \sigma Z \int_0^t \int_0^{r_0} \int_0^y \zeta \tilde{N}(ds, du, d\zeta) + \sigma Z \int_0^t \int_0^{r_0} \int_y^{\infty} \zeta N(ds, du, d\zeta)$$

where

$$\Theta(\alpha, y) = \frac{2}{\pi} \alpha \Gamma(\alpha - 1) \frac{\sin(\pi \alpha/2)}{y^{\alpha - 1}}.$$

- In a similar way, the α-CIR process can be written as

$$r_t = r_0 + \int_0^t \tilde{a}(\alpha, y)\left(\tilde{b}(\alpha, y) - r_s\right)ds + \sigma \int_0^t \int_0^{r_s} W(ds, du)$$

$$+ \sigma Z \int_0^t \int_0^{r_s} \int_0^y \zeta \tilde{N}(ds, du, d\zeta) + \sigma Z \int_0^t \int_0^{r_s} \int_y^{\infty} \zeta N(ds, du, d\zeta)$$

where

$$\tilde{a}(\alpha, y) = a + \sigma Z \Theta(\alpha, y), \quad \tilde{b}(\alpha, y) = \frac{ab}{a + \sigma Z \Theta(\alpha, y)}.$$
Continuous state branching process with immigration (CBI)

CBI (Kawazu & Watanabe 1971) of branching mechanism $\Psi(\cdot)$ and immigration rate $\Phi(\cdot)$: Markov process X with state space \mathbb{R}_+ verifying

$$
\mathbb{E}_x \left[e^{-pX_t} \right] = \exp \left[-x\nu(t, p) - \int_0^t \Phi(\nu(s, p)) \, ds \right],
$$

where $\nu : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}$ satisfies

$$
\frac{\partial \nu(t, p)}{\partial t} = -\Psi(\nu(t, p)), \quad \nu(0, p) = p
$$

and Ψ and Φ are functions on \mathbb{R}_+ given by

$$
\Psi(q) = \beta q + \frac{1}{2} \sigma^2 q^2 + \int_0^\infty (e^{-qu} - 1 + qu) \pi(du),
$$

$$
\Phi(q) = \gamma q + \int_0^\infty (1 - e^{-qu}) \nu(du),
$$

with $\sigma, \gamma \geq 0$, $\beta \in \mathbb{R}$ and π, ν being two Lévy measures such that $\int_0^\infty (u \wedge u^2) \pi(du) < \infty$ and $\int_0^\infty (1 \wedge u) \nu(du) < \infty$.
Link with the CBI processes

Let r be an α-CIR $(a, b, \sigma, \sigma_Z, \alpha)$ process. Then r is a CBI with
branching mechanism: $\Psi(q) = aq + \frac{\sigma^2}{2} q^2 - \frac{\sigma_Z^\alpha}{\cos(\pi\alpha/2)} q^\alpha$ (6)

immigration rate: $\Phi(q) = abq$. (7)

Consequences:

- As $t \to +\infty$, r_t has a limite distribution r_∞, given by
 $E[e^{-pr_\infty}] = \exp\left\{ - \int_0^p \frac{\Phi(q)}{\psi(q)} dq \right\}$, $p \geq 0$.

- Laplace transform
 $E[e^{-r_t - p \int_0^t r_s ds}] = \exp\left(- r_0 \nu(t, \xi, p) - \int_0^t \Phi(\nu(s, \xi, p)) ds \right)$,
 with $\partial_t \nu(t, \xi, p) = -\Psi(\nu(t, \xi, p)) + p$, $\nu(0, \xi, p) = \xi$.

- Let $r^{(\alpha)}$ be α-CIR$(a, b, \sigma, \sigma_Z, \alpha)$ process, $\alpha \in (1, 2]$. Then
 $r^{(\alpha)} \xrightarrow{L} r^{(2)}$ in $D(\mathbb{R}_+)$ as $\alpha \to 2$.

Equivalent martingale measure for bond pricing

- Let r be an α-CIR($a, b, \sigma, \sigma_Z, \alpha$) processes under the initial probability \mathbb{P}.
- Fix $\eta \in \mathbb{R}$ and $\theta \in \mathbb{R}_+$, and define
 \[U_t := \eta \int_0^t \int_0^{r_s} W(ds, du) + \int_0^t \int_0^{r_s^-} \int_0^\infty (e^{-\theta \zeta} - 1) \tilde{N}(ds, du, d\zeta). \]
- Change of probability: $\frac{d\mathbb{Q}}{d\mathbb{P}} = \mathcal{E}(U)$, with $\mathcal{E}(U)$ the Doléans-Dade exponential of U (Kallsen & Muhle-Karbe, 2010).
- r is an α-CIR($a', b', \sigma, \sigma_Z, \alpha$) type process under \mathbb{Q} with
 \[a' = a - \sigma \eta - \frac{\alpha \sigma Z}{\cos(\pi \alpha/2)} \theta^{\alpha-1}, \quad b' = ab/a', \]
 and a modified Lévy measure
 \[\mu'(d\zeta) = -\frac{e^{-\theta \zeta} 1_{\{\zeta > 0\}}}{\cos(\pi \alpha/2) \Gamma(-\alpha) \zeta^{1+\alpha}} d\zeta. \]
- r remains to be a CBI process under \mathbb{Q}.
Application to bond pricing

For simplicity, we assume that the short rate r is given by an α-CIR(a, b, σ, σ_Z, μ, α) model under \mathbb{Q}.

- Zero-coupon bond price:

$$B(t, T) = \exp \left(- r_t \nu(T - t) - ab \int_0^{T-t} \nu(s) ds \right),$$

where $\nu(\cdot)$ is given by

$$\frac{\partial \nu(t)}{\partial t} = 1 - \Psi(\nu(t)), \quad \nu(0) = 0,$$

with $\Psi(q) = aq + \frac{\sigma^2}{2} q^2 - \frac{\sigma_Z^x}{\cos(\pi \alpha/2)} q^\alpha$.

- We have

$$\nu(t) = f^{-1}(t) \text{ where } f(t) = \int_0^t \frac{dx}{1 - \Psi(x)} \quad (8)$$
Proposition
The function $\nu(\cdot)$ is increasing with respect to $\alpha \in (1, 2]$. In particular, the bond price $B(0, T)$ is decreasing with respect to α.

- α characterizes the tail fatness: when α decreases, it is more likely to take values far away from median and have large jumps.
- Generalized Blumenthal-Getoor index (e.g. Aït-Sahalia and Jacod, 2009) $\inf\{\beta > 0 : \sum_{0 \leq s \leq T} \Delta r_s^\beta < \infty, \ a.s.\} = \alpha$.
- The above proposition shows that the α-CIR model is suitable to describe the phenomenon of low interest rate trend with jumps.
An explanation of Proposition

- The compensated α-stable Lévy process Z in the α-CIR model: a smaller α is related to a deeper (negative) compensation and hence a stronger mean-reversion.

- As the interest rate becomes low because of the mean-reversion effect, the self-exciting property will imply a decreasing frequency of jumps and enforce the tendency of low interest rate.
Simulation of processes Z and r with different α

Figure: Three parameters of α: 2 (blue), 1.5 (green) and 1.2 (black)
Figure: Bond price is decreasing w.r.t. α, curve CIR (in red) corresponds to $\sigma_Z = 0$.

$r_0 = 0.05$, $a = 0.1$, $b = 0.3$, $\sigma = 0.1$, $\sigma_Z = 0.3$
Jump behavior

- The jumps, especially the large jumps capture the significant changes in the interest rate and may imply the downgrade risk of credit quality.
- Fix $y > 0$ and define the first time that the jump of r is large than $\sigma_Z y$, i.e. $\tau_y = \inf\{t > 0 : \Delta r_t > \sigma_Z y\}$.
- Consider the truncated process $r^{(y)}$ as

$$r_t^{(y)} = r_0 + \int_0^t \bar{a}(\alpha, y)(\bar{b}(\alpha, y) - r_s)ds + \sigma \int_0^t \int_0^{r_s} W(ds, du)$$

$$+ \sigma_Z \int_0^t \int_0^{r_s} \int_0^y \zeta \tilde{N}(ds, du, d\zeta).$$

- It is also a CBI process which coincides with r up to τ_y, and with the branching mechanism given by

$$\psi^{(y)} = \psi + \sigma_Z^{\alpha} \int_y^{\infty} (1 - e^{-q\zeta}) \mu(d\zeta).$$
Probability law of the first large jump

We have

\[\mathbb{P}(\tau_y > t) = \exp \left(-l(y, t) r_0 - ab \int_0^t l(y, s) ds \right) \]

where \(l(y, t) \) is the unique solution of

\[\frac{dl}{dt}(y, t) = \sigma_Z^\alpha \int_y^\infty \mu(d\zeta) - \Psi(y)(l(y, t)), \]

with initial condition \(l(y, 0) = 0. \)

- Equivalent form:

\[\mathbb{P}(\tau_y > t) = \mathbb{E} \left[\exp \left\{ -\sigma_Z^\alpha \left(\int_y^\infty \mu(d\zeta) \left(\int_0^t r_s^{(y)} ds \right) \right) \right\} \right]. \]

which is a bond price written on the auxiliary rate \(r^{(y)} \) weighted by the measure \(\mu \) restricted on \((y, \infty)\).
Probability function \(\mathbb{P}(\tau_y > t) \) for the first big jump and the expectation of \(\tau_y \)

Figure: Probability function \(\mathbb{P}(\tau_y > t) \) and expectation of the first jump time \(\tau_y \) of the short rate \(r \) whose jump size is larger than \(y \).
Thanks for your attention!