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Motivation
� Current sovereign bond markets in the Euro zone:◇ persistency of low interest rates◇ significant fluctuations at local extent.

Figure: Long term interest rates of Euro area countries.



Modelling approaches

� Large fluctuations in financial data motivate the introduction
of jumps in the interest rate dynamics: Eberlein & Raible
(1999), Filipović, Tappe & Teichmann (2010)...

� Hawkes process to model the “self-exciting” feature:
Aït-Sahalia & Jacod (2009), Errais, Giesecke & Goldberg
(2010), Dassios & Zhao (2011), Rambaldi, Pennesi & Lillo
(2014), and Jaisson & Rosenbaum (2015)...

� Difficulty: jump presence v.s. trend of low interest rate



Plan of our work

� Objective: a new model of interest rate (↵-CIR model) for
these seemingly puzzling phenomena in a unified and
parsimonious framework.

� Jump diffusion model as natural extension of the CIR model,
using the ↵-stable branching processes

� CIR model is the particular case with continuous path
� Integral representation to highlight the branching property,

Dawson and Li (2006):
� limit of Hawkes processes: clustering and self-exciting

properties;
� link with CBI processes: exponential affine structure for bond

price, Duffie, Filipović & Schachermayer (2001)

� The bond price decreases with the parameter ↵, which allows
to respond to the low interest rate behavior.



The ↵-CIR model setup

We consider ↵-CIR(a,b,�,�
Z

,↵) model for the short interest rate
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A natural extension of the CIR model
� Existence of the unique strong solution by Fu and Li (2010).
� When �

Z

= 0, we recover the CIR model.
� When ↵ = 2, it also reduces to a CIR model but with volatility

parameter (�2 + 2�2

Z

)1�2.
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Figure: Lévy process Z and the corresponding rate r with different ↵.



� The difference of Z from a Brownian motion is controlled by
the tail index ↵:◇ ↵ = 2: Z is a Brownian motion scaled by

√
2;

◇ ↵ < 2: Z is a pure jump process with heavy tails. More as ↵
close to 1, more likely Z

t

takes values far from median;

◇ 1 < ↵ < 2: Z is a pure jump process with infinite-variation:
comparison with Poisson process, Z has an infinite number of
(small) jumps over any time interval, allowing it to capture the
extreme activity.

◇ A smaller ↵ is related to a deeper (negative) compensation
of Z .



Similar properties with CIR model

Boundary condition:

The point 0 is an inaccessible boundary if and only if 2ab ≥ �2. In
particular, a pure jump ↵-CIR process with ab > 0 never reaches 0
since � = 0.

Branching property:

r can be decomposed as r = r (1) + r (2) where for i = 1,2, r (i) is an
↵-CIR(a,b(i),�,�

Z

,↵) process such that r
0

= r (1)
0

+ r (2)
0

and
b = b(1) + b(2).



Integral representation

Integral form by using the random fields
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�
W (ds,du): white noise on R2+ with intensity dsdu,

�
Ñ(ds,du,d⇣): compensated Poisson random measure on R3+
with intensity dsduµ(d⇣),

� µ(d⇣) is a Lévy measure satisfying ∫ ∞
0

(⇣ ∧ ⇣2)µ(d⇣) <∞.

Random fields for interest rate modelling: Kennedy (1994),
Albeverio, Lytvynov & Mahnig (2004).



Equivalence of two representations

We choose the Lévy measure to be

µ(d⇣) = − 1{⇣>0}d⇣
cos(⇡↵�2)! (−↵)⇣1+↵ , 1 < ↵ < 2, (3)

Then the root representation (1) and the integral representation (2)
are equivalent in the following sense by Li (2011):

� The solutions of the two equations have the same probability
law.

� On an extended probability space, they are equal almost surely.



Link to Hawkes process
� When � = 0 and µ(d⇣) = �

1

(dz), then r is given by
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which is the intensity of Hawkes process ∫ t
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� Jaisson and Rosenbaum (2015): nearly unstable Hawkes

process converges, after suitable scaling, to a CIR process.



Locally equivalent Lévy-Ornstein-Uhlenbeck process

� Consider the ↵-CIR process with initial value r

0

and introduce
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where the processes W and Ñ are the same as in (1).
� the above LOU process can be written as
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� The implicit negative drifts lead to a linear decay for �
t

while
an exponential decay for r

t

: when �
Z

increases, the decreasing
drift plays a more important role in ↵-CIR than in LOU.



Comparison between ↵-CIR and LOU (continued)
� Separating small and large jumps in LOU, we get
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� In a similar way, the ↵-CIR process can be written as
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Continuous state branching process with immigration (CBI)
CBI (Kawazu & Watanabe 1971) of branching mechanism # (⋅) and
immigration rate $ (⋅): Markov process X with state space R+
verifying
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Link with the CBI processes
Let r be an ↵-CIR (a,b,�,�

Z

,↵) process. Then r is a CBI with

branching mechanism: # (q) = aq + �2
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Consequences:
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Equivalent martingale measure for bond pricing
� Let r be an ↵-CIR(a,b,�,�

Z

,↵) processes under the initial
probability P.

� Fix ⌘ ∈ R and ✓ ∈ R+, and define
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(e−✓⇣−1)Ñ(ds,du,d⇣).
� Change of probability: dQ

dP = E(U), with E(U) the Doléans-
Dade exponential of U (Kallsen & Muhle-Karbe, 2010).
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Application to bond pricing
For simplicity, we assume that the short rate r is given by an
↵-CIR(a,b,�,�

Z

, µ,↵) model under Q.
� Zero-coupon bond price:
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Proposition

The function v(⋅) is increasing with respect to ↵ ∈ (1,2]. In
particular, the bond price B(0,T ) is decreasing with respect to ↵.

� ↵ characterizes the tail fatness: when ↵ decreases, it is more
likely to take values far away from median and have large
jumps.

� Generalized Blumenthal-Getoor index (e.g. Aït-Sahalia and
Jacod, 2009) inf{� > 0 ∶ ∑
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� The above proposition shows that the ↵-CIR model is suitable

to describe the phenomenon of low interest rate trend with
jumps.



An explanation of Proposition

� The compensated ↵-stable Lévy process Z in the ↵-CIR
model: a smaller ↵ is related to a deeper (negative)
compensation and hence a stronger mean-reversion.

� As the interest rate becomes low because of the
mean-reversion effect, the self-exciting property will imply a
decreasing frequency of jumps and enforce the tendency of low
interest rate.



Simulation of processes Z and r with different ↵
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Figure: Three parameters of ↵: 2 (blue), 1.5 (green) and 1.2 (black)



Bond prices
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Jump behavior

� The jumps, especially the large jumps capture the significant
changes in the interest rate and may imply the downgrade risk
of credit quality.

� Fix y > 0 and define the first time that the jump of r is large
than �
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⇣Ñ(ds,du,d⇣).
� It is also a CBI process which coincides with r up to ⌧

y

, and
with the branching mechanism given by

# (y) = # + �↵
Z

� ∞
y

(1 − e−q⇣)µ(d⇣).



Probability law of the first large jump

We have
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Probability function P(⌧
y

> t) for the first big jump and the
expectation of ⌧

y
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Thanks for your attention !


